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Abstract

In this paper, we study an integrable Camassa—Holm hierarchy whose high-
frequency limit is the Camassa—Holm equation. By a method associated with
the Darboux transform, we construct the explicit multi-soliton and multi-cuspon
solutions. Then, we study in detail the interactions of soliton—cuspon and
soliton—soliton. Further, an interesting phenomenon is found: the soliton with
smaller amplitude can travel faster than the one with larger amplitude when
they interact. At last, we investigate in detail the head-on collision of one
soliton and one cuspon.

PACS numbers: 02.30.1k, 05.45.Yv, 47.10.+g
Mathematics Subject Classification: 35Q51, 35Q53, 35Q72

1. Introduction

The Camassa—Holm (CH) equation
U +20uy, +3uny — Uy — 2Ulyy — Ul =0 (1)

can be determined by the isospectral problem

1
O ¥ = <4_1 +/\q>1ﬁ, ()
oy = (- o + 3
t%ﬁ—(ﬁ—u) x!lf"‘?‘/f» 3)
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where ¢ = u — u,, + w and w is a real constant. Equation (1) was proposed in Camassa and
Holm [1] and Camassa et al [2] as a model equation for unidirectional nonlinear dispersive
waves in shallow water. It was also found to be a model for nonlinear dispersive waves in
hyperelastic rods (see Dai [3]). This equation has attracted considerable attention due to its
complete integrability for all values of w and other mathematical properties, e.g., when w = 0,
Camassa and Holm [1] found the peakon solution of the form

p(x, 1) = Ve FVil vV #£0. 4)

An important feature of the CH equation is that the above solution has the characteristic that
the wave crest has a corner form, which is shared by waves of the greatest height in water
(cf [4-T]). Also, it has been proven that the peakons and all smooth solitary waves for this
equation are orbitally stable (see [8—11]). This equation also admits many other interesting
traveling waves (see [12—13]), including a number of weak solutions (cf [14-15]). However,
because of the complexity of the CH equation, it is considerably difficult to find its other
solutions, especially, the N-soliton solution, N-cuspon solution, etc. Recently, a large number
of works have been devoted to study these solutions of the CH equation.

In Ferreira et al [16], they investigated the interaction of a soliton and a cuspon with
the help of numerical methods for the case of w = 2, as no explicit analytical expressions
were available at the time. Nevertheless, the authors managed to obtain some analytical
results for phase shifts after the interaction. Johnson [17] implemented Constantin’s scattering
approach (see [18]) and only obtained the analytic two-soliton and three-soliton solutions.
More recently, Parker ([19—21]) managed to obtain the associated bilinear form of the CH
equation and analyzed the N-soliton solution with the additional parameter (N > 2). Matsuno
[22] acquired a parametric representation for the N-soliton solution of (1) by introducing an
appropriate coordinate transform. Constantin et al [23] have given a formal expression for the
N-soliton solution by using the inverse scattering transform(IST). Further, in [24], Constantin
et al have extended the IST in [23] as a generalized Fourier transform to a CH hierarchy and
shown the fundamental characteristics of all the equations of the whole CH hierarchy. In Li
and Zhang [25] and Li [26], a different approach associated with the Darboux transform was
introduced to construct the explicit expressions for the multi-soliton solution. Dai and Li [27]
have developed the conclusion of [25-26] to soliton and cuspon solutions of (1). Further, using
the newly available explicit multi-soliton and multi-cuspon solutions of the CH equation, the
authors investigated the two-wave interactions and revealed some interesting phenomena that
were not found in the numerical work of Ferreira et al [16]. Recently, the stability for trains
of solitary waves was studied by Dika and Molinet [28].

In this paper, we consider a complete Camassa—Holm hierarchy (CHH). From the over-
determined isospectral problem

1
OV = <Z +/\q> v, (&)

u O U
0y = 1T—hy

e 2(5 —¢)

which is first introduced in [29], we immediately obtain the CHH

v, (6)

qr = %(ux - Mxxx)» —00 <X <00, (7)

€q; +uq; +2qu, =0, ®)

where € is the hierarchy parameter and X is the spectral parameter. Dai and Pavlov [29]
showed that its high-frequency limit is the CH equation and its low-frequency limit is the
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Hunter—Saxton equation, which is a model for the motion of a nematic liquid crystal (see
[30]). The global solutions of this equation were studied by Bressan and Constantin [31]. The
main purpose of this paper is to construct the N-soliton and N-cuspon solutions of the above
hierarchy and examine the interactions of soliton—cuspon and soliton—soliton, with the aid of
explicit solutions. An interesting phenomenon is found: the soliton with smaller amplitude
can travel faster than the one with larger amplitude when they interact.

2. The solutions of the CHH

We introduce the transformation

1
() =q*y, €))
8.y = /4. (10)
This transforms (5) into
1
—0 + = s = —— — )\,, 11
@+ Q)P = g 2 10 (11)
1 3,9 3(3,9)? 1
Q) = —+ 28 THAL (12)
4q 4q 16¢g 4w
In Li and Zhang [25], it has been shown that (11) and (12) have the following solutions:
Denote the two fundamental solutions of (11) with zero potential as
cosh k;y, i is odd,
. . (13)
sinh k; y, i is even,
where A = ki2 — 4%0.
Then we have
q=2g8, (14)
where
i fa
= ) = , 15
& A A 43 A (15)

wflG) -G

—y

W (D), ®s, ..., Dy, e25) W (D), ®s, ..., Dy, e20)

= W dn L L= @ a . d) 1n
Here, W(®,, ®,, ..., ®,) is the Wronskian determinant. The parameter y is related to x
through

x =log (\/%) . (13)
Further,

0(y) = =20, , log[W (D, D3, ..., D,)]. 19)

Also, the solution has the behavior g — w as y — Fo00.
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Now we have to introduce the variable ¢ from the ¢ part of the Lax lpalr We note that
q = w,u = 1 is a solution of the CHH. In this case, we have 0;,% = w~30,¢p = 11 0 =

“’4 3 y¢. It yields that d,¢p = l‘f 0y¢. It means that in the above solution we need to change
k y to

ft

k21_6

i 4w

Ei=ki\y+—F/— (20)

In order to find u, we rewrite (8) as

79 T ud,
ea,f+a(fu)_eq 4 ‘“; 9 4 qtou

_q : (eatq +udyg +2q0cu) 0
= 3 =0.
By using ,/q = 9,y for the above equation, it yields that 0 = €9,(d,y) + 0, (ud,y) =

€0,(0;y) + 0, (ud,y). As aresult, we have

) c
ty+

; 3y

u = —e

where c is a constant.

Let F(x,y,1) = x — log ( /f—i) = 0, then dF = 3, Fdx +9,Fdy + 8, Fdr = 0, and

a—y_arF 0,y = — aF,B,y——a'—F So, we have
0 0,
U= —cdF+ :e8,<log£) ¢ :e(’f‘— ’f2)+i. (22)
N fa) Oy h S Nz

The constant ¢ can be determined by substituting (22) and (14) into (8).

We also note that the following symmetry: if [u(x, t, €), g(x, ¢, €)] is a pair of solutions
of the CHH, [—u(x, t, —€), —q(x, t, —€)] and [—u(x, —t, €), g(x, —t, €)] are other two pairs
of solutions. Therefore, once a pair of solutions is found, other two pairs of solutions can be
deduced by using the above symmetry.

3. Single (¢, w)-soliton solutions and single (¢, w)-cuspon solutions

When two solitons or two cuspons are well separated, each of them can be regarded as a single
soliton or a single cuspon. So, in this section we first represent the solutions of (¢, w)-soliton
and (e, w)-cuspon.

3.1. (€, w)-soliton solutions

We take n = 1 in (14)—(17) and
(D1=COSh§:1, §1=k1 y+——m1, w > 0.

As a result, we obtain
exp (ﬁa)(l — 2k;/wtanh &)
' 2Jo :
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Figure 1. The three different soliton solution curves of [u, g] for k; = 0.6, w = 0.602,¢ =
50, t = —200.

exp (%)(1 + 2k /@ tanh &)
2= NG )

(470 — 1) (e + 4o — dekior + 242
(—4w +€(4kiw — 1)) (4kiwtanh® £ — 1)
Jo(4kiotanh®* & — 1)

4k%a) —1

u()’»t) = -

Vg =

’

(ki Jotanh g — 1)2 e
(2ki/wtanh & + 1)2

x =log

When 2k; /o < 1,y and x are one-to-one correspondent. The functions u, ¢, d,u and 8,q
are continuous in (—o0o, 00), and the maximum value u is at t = y = 0 and has the value

1+ 5
u(0,0) =: hs = — “ (23)
do T Wlo—1
From (23), we arrive at
hs — 1, £ — +o0.
4o
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Figure 2. The three different cuspon solution curves of u for k; = 0.698, w = 8.8,¢ = 12,1 =
—50.

Figure 1 describes three different solution curves of [u, g], respectively, for

[u(x,t,e),qx,t,e)],[—ulx,t, —€), —q(x,t, —€)], [—u(x, —t, €),q(x, —t,€)].

3.2. (€, w)-cuspon solutions

We take n = 1 in (14)—(17) and
@, =sinh &, =k |y+—], w > 0.

Then, we have

exp (ﬁa)(l — 2ki/w coth &)
fi= NG ,

exp (%)(1 + 2k /o coth &)
L= NG ,

(4kiw — 1) (4ekiw + (—4w — e(4kio — 1) sinh? &))
(—4w + 6(4/(%0) — 1))(4/(%6() cosh® & — sinh? El)
Jo(4kiwcoth® & — 1)
4k%w —1

u(y,r) =

Vi =

’

(2 Jwcoth & — 1)2e v
(2k1/w coth &y + 1)2

x =log
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Figure 3. (a) The interaction of two (€, w) solitons of u for k; = 0.2,k =04, 0w = 1,6 = —1.

From top to bottom, the time ¢ = (—130, —80), (=50, 0), (50, 80), 130. (») The interaction of
two (€, w)-solitons of u for k; = 0.2,k = 0.4, w = 1, € = 1. From top to bottom, the time t =
(—130, —80), (=50, 0, (50, 80), 130.

When 2k;/w > 1,y and x are one-to-one correspondent. The solution u is continuous in
(—00, 00), but d,u and g have singularities, and the maximum value u# is at f = y = 0 and has
the value

u(0,0) =: he = ———— 24)
€T Wo 1
From (24), we also arrive at
he — 1, € — Fo0.
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Figure 3. (Continued.)

In figure 2, we describe three different cuspon solution curves of u, respectively, for
u(xa t5 6)7 _u(x7 ta _6)7 _u(x7 _t’ 6)'

However the solution curves of ¢ cannot be plotted well for its singularities.

4. The interaction processes

4.1. The interaction of two (€, w)-solitons
We take n = 2 in (14)—(17) and set
W(®,, ®;) = W(cosh§, sinh &),
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Figure 4. (a) The interaction of two (€, w) solitons of g for k; = 0.2,k =04, 0w = 1,¢ = —1.
From top to bottom, the time ¢ = (=130, —80), (=50, 0), (50, 80), 130. (») The interaction of
two (€, w) solitons of ¢ for k; = 0.2,k = 0.4,w = 1,€ = 1. From top to bottom, the time
t = (=130, —80), (=50, 0), (50, 80), 130.

W(cosh&;, sinh &, exp (#5))
W (cosh &y, sinh &)

W(cosh &1, sinh &, exp (%))
W (cosh &y, sinh &)

2
u=68tln<ﬁ>+\/§, x = log f—12 ,
12 q fz

fi=

3

fa=

3
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Figure 4. (Continued.)

Jo wt

Slzk] y+ 1 s EZZkZ y+1— ’ @ > 0.
The corresponding solution is a two-soliton solution.

In figure 3(a) (¢ = —1) and in figure 3(b) (¢ = 1), we have described the interaction
processes of two (€, w)-solitons for seven different times of u, respectively. It can be seen
that the interaction processes and the shapes of two (€, w)-solitons in figures 3(a) and (b)
are similar. That is, the sign of € (other parameters are identical) has little influence on the
characters of the two-soliton solution of u. The interaction is very similar to that of two
solitons of the KdV equation.
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Figure 5. The interaction of one (€, w)-soliton and one (e, w)-cuspon of u for k; = 0.3,k =

0.5, w = 1.4, ¢ = —0.6. From top to bottom, the time t = (—150, —80), (—30, 0), (30, 80), 150.

Figure 4(a) (¢ = —1) and figure 4(b) (¢ = 1) plot the interaction processes of two
(e, w)-solitons for seven different times of g, respectively. From the graphs, it is easy to see
that the sign of € (other parameters are identical) has little influence on the characters of the
two-soliton solution of ¢. Initially, at # = —130, they are well separated and the soliton with
larger amplitude is located at the right. At# = 0, the soliton with smaller amplitude catches up
with another soliton with larger amplitude and they merge into one. Afterward, they gradually
separate as time increases and eventually at r = 130, the two solitons recover their original
shapes apart from some phase shifts. An interesting phenomenon is that the soliton with
smaller amplitude travels faster than the one with larger amplitude. This is opposite to the
usual case that a soliton with larger amplitude travels faster.
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4.2. The interaction of a (€, w)-soliton and a (€, w)-cuspon.
We take n = 2 in (14)—(17) and set
W(®y, ®;) = W(cosh§, cosh&),

W(cosh &1, cosh &, exp (#5))
fr= W (cosh &, cosh &) ’

W(cosh &1, cosh &, exp (%))
= ,

W (cosh &;, cosh &)

2
u=68t1n<ﬂ>+ 9, x = log —12 ,
bis q 13
Jot
1

K

_L
40

wt
, &=k y+1L , > 0.
=

5;'1:](] y+

The corresponding solution represents a combination of a single (e, w)-soliton and a single
(e, w)-cuspon.

In figure 5, we have depicted the solution profiles for seven different times, which describe
the complete interaction process of one (€, w)-cuspon and one (€, w)-soliton. We can see
that the (€, w)-cuspon and the (€, w)-soliton merge together at + = 0. As the time further
evolves, the (e, w)-soliton separates from the (€, w)-cuspon little by little. Eventually, they
regain their original forms except with some phase shifts.

At last, we point out that the head-on collision of one cuspon and one soliton has little
study. Ferreira et al [16] and Dai and Li [27] have considered the interaction of a cuspon and a
soliton whose peaks are on the opposite of the horizontal axis. Differently, this paper provides
the head-on collision of a cuspon and a soliton whose peaks are always in the same side of the
horizontal axis.
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